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ABSTRACT 

This paper proposes a method of generating queries using sample 

patent documents and identifying keywords that have a high 

probability of getting relevant results. The technique is to extract 

keywords from the sample patent document using a keyword co-

occurrence method and then using the cited patents to add 

additional keywords. This query is then expanded using the 

patent’s classification classes. The generated query is then 

submitted to the search engine and the experimental results are 

provided. 
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keywords, patent search 

1. INTRODUCTION 
For any search engine, the quality of results is influenced by the 

quality of the input query. Most often while looking for new 

information, a user follows an iterative process of modifying his 

query depending on the current results. In cases where the user is 

familiar with the available information, a good query results in 

good recall and precision of the search engine. In cases where the 

user’s knowledge of the domain is limited and the number of 

stored documents is large, generating efficient queries is quite 

difficult [5]. Also, when the subject of the search is fairly 

complex, a query is usually continuously modified by the user to 

obtain good results. This is particularly evident in a patent search 

engine where the patents are complex documents often describing 

multiple concepts in hard to understand language using highly 

specific domain jargon. It may also be the case that those doing 

the search are not domain experts. It would thus be helpful if a 

tool were available that could suggest useful keywords which the 

user could add to his query.  

Whenever search is motivated by existing available information, 

more often than not, a document will be available, that can be 

used as a source for generating a query. This is particularly the 

case when searching the United States Patent and Trademark 

Office (USPTO) database [8]. Searching the data often involves 

being provided a target patent (application) to which related prior 

patents are desired. Although the USPTO system provides search 

tools, these are Boolean keyword based, and thus require the non-

experts to identify important keywords. The ability, instead, to 

simply use the patent as the input would not only facilitate easier 

searching, but would also insure more accurate complete results.  

The objective of this work is to investigate the applicability of 

doing just that: providing a patent text document as input to the 

USPTO search engine.  We thus propose the use of a preprocessor 

as a front end to the existing USPTO search engine.  This 

facilitates the use of the current up to date USPTO database while 

facilitating easier access to the data.  Our front end thus extends 

on the capabilities of the simple Boolean query interface to the 

patents thus providing more flexibility and functionality.   The 

advanced search interface provided for the USPTO database is not 

intuitive, with the user having to type in the query in a format 

specific to the search engine.    A large number of query terms 

make this process tedious and frustrating for the user.  Having a 

preprocessor frontend thus also provides an easier access to the 

data. The primary users of our system would mainly be either a 

patent examiner looking for patents similar to the one under 

examination or a potential patent applicant who is looking for 

existing patents related to his invention. The patents being 

searched for are referred to as prior art. In both these cases the 

users have a large sample text available and are looking for other 

documents similar to it.   

This paper is organized as follows. Section 2 discusses some 

related work in this area. Section 3 gives the query generation 

mechanism and describes the algorithm used in our approach. 

Section 4 gives the implementation details of the system. Section 

5 presents some preliminary measurements made with this system. 

2. RELATED WORK 
Related work exists in two areas: automatic query generation and 

USPTO database access.  We briefly examine each of these areas. 

2.1 Patent Search Tools 
There have been many projects and products which have examine 

the use of software to facilitate access to patent database access.  

These tools can be divided into two classes:  those that access 

their own cached copies of the patent databases, and those that 

provide a frontend to access the existing patent databases. 

There are two major products that provide access to their own 

archive of the patents.  GetthePatent.com [11] facilitates access of 

patents by text, field, query, and number.  The goal is to provide 

the ability to download multiple pages of a patent to a users PC 

using their own archive of patent databases including but not 

limited to the USPTO database.  The accessed archive is updated 

weekly.  Perhaps the most well know patent access tool is 

provided by Google Patent Search [15].  Using a traditional 

Google GUI interface, Google Patent Search facilitates a 

straightforward easy to use access of its own USPTO database 

archive. 

There have been several other products that function as frontends 

to existing patent databases.  IP-Discover [12] is a software tool 

which can be placed on a user’s PC.  As with GetThePatent, many 

different patent databases are searched.  IP-Discover is not really 

a Web based tool as it searches the relevant patent databases and 



downloads results in a background mode.  Unlike GetthePatent, 

IP-Discover accesses the relevant patent databases as opposed to 

an archive.  SurfIP also accesses many different patent databases 

[13].  It can also be used to search trademark and design 

databases.  It provides Boolean keyword access, patent number 

search access, and access via formatted field values to the specific 

patent databases themselves.  The GUI interface is easier to use 

than that of the actual patent database systems themselves. 

PatentHunter is a software package that provides a frontend to 

download complete patents to a user’s PC [14].  It directly 

accesses the USPTO database.  Free Patents Onine provides an 

online Web portal to access the USPTO database [15].  It uses a 

sophisticated Porter Stemming method to improve recall.  

Identified patents are downloaded in either a compressed pdf 

format or XML.  Some aggregate operations of patent fields (such 

as forward and backward link counts) are provided as are data 

analysis tools.   

In the above sampling of the existing patent search tools, none of 

the products facilitate an algorithm such as the one we propose.  

Also, none of them allow a patent (or text document) to be 

provided as input. 

2.2 Automatic Query Generation 
There have been many ways proposed to generate queries 

automatically. Primarily query generation is done in two ways, 

1. The user provides a word that he/she is interested in and 

the system uses this word and establishes a set of relevant 

keywords related to this word 

2. A system takes non intrusive samples of the user’s 

environment to establish a probable context and suggests 

keywords that user may be interested in. 

In the method proposed by Ryu et. al. [3], the keyword expansion 

approach is used. The keyword that the user gives is acted upon 

by an inference engine that uses an ontology knowledge base and 

generates a list of related keywords. A semantic thesaurus is then 

used to add keywords to these terms. Term weights are then 

calculated for these expanded keywords and top n relevant 

keywords are then used as the query that is submitted to a search 

engine. With a patent search engine, we do not have the facility to 

establish a context and keywords may have multiple meanings 

with respect to the context in which they occur and the number of 

different contexts may be large. This makes it difficult for a user 

to define an ontology which could be used by an inference engine 

to generate additional keywords. 

The method proposed by Kulyukin for automatic query generation 

[4] is suitable to situations where retrieval of documents is not the 

primary task and the size of the document collection is known. 

The system takes random samples of the text on which the user is 

working and generates queries. The results of the queries are 

presented to the user and feedback is solicited in a non-intrusive 

manner. There are two drawbacks in using this approach with a 

patent search engine. One is for the user to validate the results and 

the other is the prior knowledge of the document collection. 

Given the vast number of documents in the patent database, it 

would be very difficult for the user to quickly make any form of 

relevance judgments. In our technique we do not know the 

document collection and avoid user feedback.  

The methods listed above do not work with a dynamic patent 

database.  In this environment we do not have a corpus to train the 

system.  

Our contribution is two fold. First, we allow the user to specify 

the input text, which is arbitrarily large like the claims section 

from a prior patent or from a patent application. Secondly, the 

query is generated from a single document without any need for 

training. 

3. PATENT SEARCH  
Our work was primarily motivated by the difficulty involved in 

searching for patent documents. Given the large body of text 

present in a patent database, it is a difficult proposition when one 

has to search for patents that are similar to a given text. While the 

user would have to read through the entire text to validate the 

usefulness of the returned document, there are no first level tools 

that assist in identifying a set of potential prior arts. For example, 

when it comes to searching for patents, different types of searches 

may be possible [8]. 

Novelty Search: This is done to establish the patentability of an 

invention. This search would include any and all public domain 

knowledge to determine whether the invention is novel enough to 

be patented. The search realm for this type of search would 

include more than just the patent database. 

Infringement Search: This search is conducted to find whether 

the invention would infringe an already existing and unexpired 

patent. This search primarily involves the patent databases. The 

claims section of the patent is ideally suited for this search. 

State-of-the-Art Search: This search is used to establish the 

current state-of-the-art is the field related to the invention. This 

search usually yields the list of patents that form the prior art for 

this invention as long as the infringement problems are avoided. 

Right-to-Use Search: This search is used to establish whether 

there is a basis for not enforcing an infringed unexpired patent. 

This basis is usually determined by examining the application 

process for the infringed patent and an examination of the prior 

art of the infringed patent.  

Our proposed technique would be useful as a first level search 

tool in all the above search cases. In all these cases, forming 

queries to maximize relevant results can prove to be tedious. 

Having a tool that could suggest useful keywords and rank them 

based on importance would be highly effective for the users. 

3.1 USPTO Patent Document 
A USPTO Patent document is a legal document published by the 

USPTO describing the invention for which the patent has been 

granted. The patent document is made of the following sections, 

• [PN] Patent number, which identifies the patent 

• [IN] The name of the inventor  

• [AN] The name of patent owner or the assignee 

• [PEX] The examiners of the patent application 

• [CCL], [ICL] US and international search classification of 

the subject matter 

• [REF] [OREF] Prior art that are referenced by this patent. 

These may be other patents and/or other documents in the 

public domain  



• [ABST] Abstract section describing the environment and 

nature of invention in less than 250 terms 

• [SPEC] Description that describes the background of the 

invention along with the field of invention and proceeds to 

describe the details of the patent. 

• [ACLM] The Claims section which lists the qualities of this 

invention in terms of what it does. 

The complete list of patent document fields and their notations 

can be found in [11].  

3.2 Search Engine 
We use the patent search engine hosted at USPTO for running the 

queries generated by our applications. The search engine handles 

simple field based queries and has an advanced search section 

where detailed queries can be specified using the described query 

format. In this paper we use the generated query words to create 

the query in the advanced query format. The query format is given 

below: 

FIELD/(field item) AND FIELD/(field item) AND .. 

where, 

FIELD may be one of; ACLM, ABST, SPEC, APD, PN 

Field item is the value associated with that field 

The fields ACLM, ABST, SPEC are used to search the body of 

the patents while the others are specific fields of the patent such 

the patent number, classification and dates.  

ABST refers to the abstract of the patent. The abstract contains 

less than 250 words and is not a useful indication of the details of 

the invention. It is used as an overview section for users than as a 

potential search text. ACLM refers to the claims section of the 

patent and is the best description of the patent. We primarily 

search this section for obtaining good results. SPEC refers to the 

description section of the patent. While SPEC usually contains the 

largest amount of text, it is usually diluted compared to the claims 

section as it is more verbose compared to the claims section. In 

our studies we primarily used the ACLM and the SPEC based 

queries. 

4. OUR APPROACH 
The best source information about a document is contained within 

the document itself. This property is exploited by the tf-idf 

measure [17] which promotes words that occur frequently within 

a document but occur less frequently in a document collection. 

This metric is widely used in indexing schemes for search 

engines. If one can have the knowledge of the index of a search 

engine, then it would be easy to select the keywords for the query. 

But it is not feasible to as the indexes change continuously over 

time as new documents are added to the system. So, the next 

option is to get a set of keywords that closely resemble the index 

stored by the search engine for that document.  

We use an algorithm originally proposed as an alternative to the 

tf-idf indexing scheme. In our initial studies we found that it 

works well as technique to generate keywords for queries as 

opposed to indexing.  

4.1 Keyword Extraction 
We now describe the algorithm proposed by Matsuo Et. al. [1]. 

Following this description we introduce our extended version that 

takes citations and classification in to account.   

The main idea of Matsuo’s algorithm is that, if a term occurs 

frequently with a set of other high frequency terms, then the term 

is likely to be significant. This co-occurrence bias is calculated 

using the χ2 test. The test is used to calculate the deviation of 

expected frequencies from observed frequencies. Statistically, χ2 

is defined as,  
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Where, 

• freq(w,g) is the frequency of co-occurrence of terms w 

and g 

• G is the set of frequently occurring terms in the 

document 

• nwpg is the expected frequency of co-occurrence with nw 

being the number of terms in the sentences where w 

occurs and pg is the probability that a term in the 

document may co-occur with g 

Matsuo’s algorithm uses a modified Chi Squared as shown 

below:.  
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In this equation the χ2 value of the maximal term is subtracted. 

This is useful, since the χ2 value would be low if it co-occurs with 

only one term and high if it co-occurs with multiple terms. To 

improve the reliability χ2 values, the algorithm clusters frequent 

terms and calculates the χ2 values over the clusters. This is 

primarily done to prevent large χ2 values of terms that occur with 

co-occurring frequent terms. Clustering is done pair wise using 

Jensen-Shannon divergence [7] that calculates the similarity 

between two distributions. Two terms belong to the same cluster 

if their Jensen Shannon divergence is greater than the threshold 

value (0.9 x log 2). The clustering is also done using mutual 

information. This means that if terms w1 and w2 occur together 

frequently, then they are considered to be in the same cluster. The 

mutual information threshold was set as log 2. The threshold 

values were determined by running a few experiments with a 

variety of patent documents and observing the results. We started 

the thresholds at 1.0 and kept varying the threshold each time 

until the results had relatively lower number of irrelevant terms 

towards the bottom of the list.  

4.2 Query Generation  
We utilize the keyword co-occurrence algorithm to generate a 

basic set of keywords from a given patent document. Once the set 

of initial keywords are generated we add to this list in two ways. 

We use the patent classification system as a semantic database to 

add additional terms to the query. Next we utilize the citations list 

of the input patent and process those through the keyword co-

occurrence algorithm. We then add to the initial list the unique list 

of keywords generated from using the citations and the 

classification database.  



The algorithm steps are given in the next section. We retain the 

steps from the original keyword co-occurrence algorithm and add 

our modifications to it. We can either run the algorithm against 

the claims section or the specification sections of the input patent.  

4.3 Algorithm Listing  
Step 1: Preprocessing 

• Discard stop words listed in [9].  

• Stem the remaining words using the Porter Stemming 

Algorithm [12] 

Step 2: Selection of frequent terms  

• Select the top frequent terms up to 30% of the number 

of running terms (Ntotal) 

Step 3: Clustering frequent terms  

• Cluster a pair of terms whose Jensen-Shannon 

divergence is above the threshold (0.90xlog 2).  

• Cluster a pair of terms whose mutual information is 

above the threshold (log(2.0)).  

• Terms can be clustered by either of the two clustering 

method. Let the resultant set of clusters be called C. 

Step 4: Calculation of expected probability  

• Count the number of terms co-occurring with c Є C, 

denoted as nc, to yield the expected probability pc = 

nc/Ntotal. 

Step 5: Calculation of χ2 value  

• For each term w, count co-occurrence frequency with c 

Є C, denoted as freq(w, c). Count the total number of 

terms in the sentences including w, denoted as nw. 

Calculate χ’2 value given by (2). 

Step 6: Output keywords  

• Normalize the χ’2 values using the highest value 

returned and show the list of words that are greater than 

a threshold value. We have found that a threshold value 

between 0.2 and 0.5 depending on the text size works 

well to return relevant terms. Mark this as List1.  

Step 7: Extract terms from classification category 

• Get the classification numbers of the input patent and 

extract the words in the classification category after 

discarding stop words. Mark this as List2. 

Step 8: Run the keyword co-occurrence algorithm against the 

citations 

• Run the keyword generation algorithm against the 

appropriate section of the citation patents and get a list 

of the unique terms. Mark this as List3. 

 

Step 9: Merge the generated keywords 

• Merge List1, List2 and List3 

Step 10: Form a USPTO query from the keywords generated 

• Form a USPTO query and submit the resultant query to 

the Patent Search Engine. 

Step 11: Calculate the actual relevance of the results  

• Calculate the relevance of the resultant patents with the 

input patent to determine the actual relevance. 

We illustrate the use of this algorithm with the following example. 

For purposes of being concise, we make use of small amounts of 

text here. Consider the abstract of a USPTO issued patent shown 

below, 

 

 

5. IMPLEMENTATION  
This section describes our implementation of the algorithm. The 

algorithm is implemented as a python CGI application running on 

the apache web server. The application would connect to the 

USPTO database and fetch a patent document, which was then 

processed to remove the HTML tags and stored in a local database 

USPTO No. 5095480, 

Title: Message routing system for shared 

communication media networks 

Input Text: A plurality of disparate communication 

network systems communicate with each other through 
the use of different physical media protocols. Each 
of the systems has at least one input and one 
output. A message routing system couples a 
transmitter at any one system input to a receiver 
at any other system output using a message format 
that is structure independent of the location of 
the receiver in the system. Each 
receiver/transmitter device coupled to any one 
system input has a unique, fixed and unchangeable 
identification code regardless of the communication 
network system to which it is connected. To couple 
a message from any one receiver/transmitter device 
to a second receiver/transmitter device at an 
unknown location within the communication network 
system, a message format is transmitted from the 
sending location containing the fixed, unique 
identification code of the receiving station. A 
routing system having a plurality of intermediate 
routing devices receives the message format and 
couples it to the receiving station at the unknown 
location using only the fixed, unique 
identification codes of the transmitting and 
receiving stations and the addresses of the 
intermediate routing devices for determining 
routing. 

Identified Terms From Patent: receiver, systems, 

routing, device, message 

Suggested Terms (From Classification): address, 

architecture, area, channel, channels, 
communicated, data, delay, distributed, expense, 
field, geographical, header, information, 
interexchange, nodes, packet, pattern, plurality, 
pulse, routing, selection, signalling, specified, 
switch, switching, toll 

Suggested Terms (From Citations): lines, packets, 

connected, output, telephone, radio, sets, 
specific, zones, devices, searching, arrangement, 
paging, switches, local, data, channels, cellular, 
personal, computers, cellular, system, nodes, 
network 

USPTO Query: ABST/receiver AND systems AND routing 

AND device AND message AND lines AND communication 
AND paging AND nodes AND data AND personal AND 
telephone AND switches AND information AND packet 
AND network AND computers 

No. of Results: 1419 

Results using only the input patent keywords: 21363 



to speedup subsequent fetches. The outline of the program flow is 

given in Figure 1.  

 

Input Text: For our search purposes we primarily use the claims 

section since it forms the best description of the patent. The 

abstract section has very little text to conduct any meaningful 

search and the description contains a lot of loose text that could 

dilute the generated query resulting slightly reduced precision. 

Preprocess: The input text is preprocessed by removing the 

common English stop words. Then the set of patent domain stop 

words identified in [9] are removed. The remaining words are 

then stemmed using the porter algorithm. The python based 

NLTK implementation was used for most of the text processing.  

Query generation: The algorithm described in the previous 

section is used to generate the query keywords. These keywords 

are then converted to the patent search engine format based on the 

user’s selection of the field to be searched. 

Extract Words from Classification: The classification numbers 

from the input patent is used to generate a set of additional words. 

Usually these words tend to be very closely related to the terms 

generated from the patent text. 

Extract Words from Cited Patents: The citations from the 

patent are used to generate additional keywords. The purpose of 

doing this is to span the keywords across as many classification 

categories as possible. For example, some patents may reference 

an invention in a totally different field. Doing the citation analysis 

would greatly increase the coverage of the patent query that we 

generate. 

Merge Keywords: We then merge the keywords together. The 

merging is currently done in a naïve manner. We take the top 

ranked words from each cited patent to formulate the query. We 

then add any unique words that we get from the classification 

categories. 

User Specified Keywords: The user is allowed add keywords that 

he feels would be useful in improving the search results. The list 

of keywords that are generated is also made selectable by the user. 

The user could select the keywords randomly from the list or go 

with the top n terms. 

Query Submission: The formulated query is now submitted to 

the USPTO search engine using python’s urllib semantics [9]. 

Search Engine Results: The results that are returned by the 

USPTO search engine contain the patent number and its title. The 

patents identified by the numbers returned are also fetched. 

Result Evaluation: The returned patens text is parsed and is 

compared with the input text of the generated query. We use a 

vector model and compare the two documents using the cosine 

method. 

Ranked Results: The compared set of documents is then ranked 

according to their similarity with respect to the input text. 

6. EVALUATION & RESULTS 
To evaluate the performance of this system, we ran a series of 

experiments for various input patents. We used two metrics to 

evaluate the performance of our implementation.  

• Precision which determines the number of relevant 

documents in the retrieved set and  

• Expected search length which evaluates the system 

based on the position of the relevant document in the 

retrieved set.  

We do not use recall as a measure because we don't know the 

relevant set. Also, it is not possible to fix the relevant set based on 

the citations and references. Rather than using recall as a measure, 

we use sliding ratio. This would give an indication of whether the 

system is useful. Also, we define a way of determining relevance 

from result set using the similarity measures that were returned. 

In the experiments we generated the queries using the claims text, 

primarily because the claims section has the best information 

about the patent. This is also evident from table 1 which gives the 

average normalized χ2 for terms extracted from claims and 

description sections.  

Patent Number Claims Description 

5095480 0.751247 0.5366318 

7251748 0.5600668 0.487591 

6071203 0.516233 0.4883837 

5554588 0.517553 0.4763623 

Table 1: Average χ2 Values 

The number of terms included in the query was limited by the 

query length for the USPTO search engine which is a 256 

character limit on the expanded query. In cases when the query 

terms return too few results from the USPTO search engine, we 

used the search engine hosted at [19]. When we include a large 

number of terms related to the input patent to form a query, it 

results in returning only the input patent. This is as expected since 

a larger set of words would more accurately define a documents 

index. Since patent claims tend to be well defined for a particular 

invention, the search engine returns the patent the query was 

generated from.  

To find out the performance of the search query, we evaluate the 

returned patents and compare the claims text with the input text 
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that generated the query using a cosine method[x]. Table x lists 

the similarity of the returned results to the input text which was 

the claims section of the patent. To evaluate the performance of 

the system we use the sliding ratio method as given in [x]. Table x 

gives the similarity scores for the results generated by using the 

claims text of patent number 7,251,748.  

Patent Number  Similarity  Sliding Ratio 

7,036,729  0.246259140656  0.777135782 

6,785,779  0.269319317422  0.879526881 

6,606,604  0.316880455599  0.993770032 

6,330,347  0.200545157187  0.953011384 

6,323,846  0.191944449865  0.928532033 

6,138,123  0.226133508433  0.938989953 

5,822,712  0.235294541252  0.965901222 

5,410,732  0.251477845385  1 

Table 2: Sliding Ratio & Similarity 

From the table it can be seen that the third patent returned has the 

highest similarity to the input text. A disadvantage of this measure 

though is that the tendency to return false positives. To determine 

the precision of the system, we decided on a threshold of 

similarity of the returned results. From the results, we can see that 

the similarity values tend to be on the lower side. This is primarily 

because the claims section are carefully worded and since we are 

comparing issued patents, the scores would be lower. To fix the 

relevant documents without the user’s intervention, we utilize an 

average value that improves our results. Since the entire 

documents are compared, the similarity scores give us a good 

sense of estimation of which documents are relevant to our search. 

We use the average of the similarity scores returned to fix a 

precision threshold. Similarity scores less than the average are 

automatically labeled non relevant. The precision values 

calculated using this method is given in table 3. We again used 

claims sections of the input patent. 

Patent Number Query Length Precision 

5095480  7 0.416 

7251748  5 0.5 

6071203 19 0.57 

Table 3: Search Precision 

Expected search length is the number irrelevant documents that 

need to be examined before the first n relevant document is found. 

Table 4 gives the expected search lengths for various lengths of n. 

It can be seen that the queries that were generated worked 

reasonably well for short lengths. For the patent 5095480 the ESL 

tended to be high since the document contains a higher percentage 

of generic terms related to the domain of the invention. This is 

very clear when we see that the patent has been referenced by 

more than 200 other patents. 

Patent Number ESL (n = 2) ESL (n = 5) ESL (n = 10) 

5095480  2 8 9 

7251748  1 1 7 

6071203 0 0 7 

Table 4: Expected Search Lengths 

Our approach attempts to reduce the cost and time required for 

searching patents. A strategy that can be adopted while searching 

for patents is outlined in [10]. Using our approach we can reduce 

the time and cost overhead for some of the steps involved in this 

strategy. The primary reduction in time can be achieved during the 

classification process by automatic suggestion of potential 

keywords and identification of relevant classes from the 

keywords. Also the system can be used to query USPTO to 

retrieve patents by classification and rank the patents based on 

their relevance to the input text. This has a potential of greatly 

reducing the time taken to find prior art within the patent domain. 

7. FUTURE WORK 
In this paper we presented a non intrusive method for query 

generation. A patent search engine was used to demonstrate the 

concept. We used a patent document to generate queries. These 

queries were submitted to the search engine and the results 

returned were ranked using vector model by comparing agaist the 

text that generated the query. The results were evaluated using 

identified metrics. We would like look at a way of suggesting 

additional keywords using NLP techniques that would try to 

improve the results. NLP techniques can also be used to improve 

the Boolean queries by making synonyms among the query terms 

as disjunctions. Also, comparative testing between the system and 

human users would highlight the instances when the system falls 

short. While avoiding intrusive relevance feedback is a primary, 

we would look at a way of introducing this system into a Content 

Management System that could improve upon the keywords 

currently generated by making implicit measurements against 

queries. 
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