
Exploiting Keyword Co-occurrence and Citations for

Query Generation

Badhrinath Sampathkumar
Southern Methodist University

Dallas, USA 75206

bsampath@smu.edu

Dr. Margaret Dunham
Southern Methodist University

Dallas, USA 75206

mhd@engr.smu.edu

Pete Fenner
Lightbus Technologies
Richardson, USA

4eaglemagic@tx.rr.com

ABSTRACT

This paper proposes a method of generating queries using sample

patent documents and identifying keywords that have a high

probability of getting relevant results. The technique is to extract

keywords from the sample patent document using a keyword co-

occurrence method and then using the cited patents to add

additional keywords. This query is then expanded using the

patent’s classification classes. The generated query is then

submitted to the search engine and the experimental results are

provided.

Keywords
Information retrieval, query generation, domain specific

keywords, patent search

1. INTRODUCTION
For any search engine, the quality of results is influenced by the

quality of the input query. Most often while looking for new

information, a user follows an iterative process of modifying his

query depending on the current results. In cases where the user is

familiar with the available information, a good query results in

good recall and precision of the search engine. In cases where the

user’s knowledge of the domain is limited and the number of

stored documents is large, generating efficient queries is quite

difficult [5]. Also, when the subject of the search is fairly

complex, a query is usually continuously modified by the user to

obtain good results. This is particularly evident in a patent search

engine where the patents are complex documents often describing

multiple concepts in hard to understand language using highly

specific domain jargon. It may also be the case that those doing

the search are not domain experts. It would thus be helpful if a

tool were available that could suggest useful keywords which the

user could add to his query.

Whenever search is motivated by existing available information,

more often than not, a document will be available, that can be

used as a source for generating a query. This is particularly the

case when searching the United States Patent and Trademark

Office (USPTO) database [8]. Searching the data often involves

being provided a target patent (application) to which related prior

patents are desired. Although the USPTO system provides search

tools, these are Boolean keyword based, and thus require the non-

experts to identify important keywords. The ability, instead, to

simply use the patent as the input would not only facilitate easier

searching, but would also insure more accurate complete results.

The objective of this work is to investigate the applicability of

doing just that: providing a patent text document as input to the

USPTO search engine. We thus propose the use of a preprocessor

as a front end to the existing USPTO search engine. This

facilitates the use of the current up to date USPTO database while

facilitating easier access to the data. Our front end thus extends

on the capabilities of the simple Boolean query interface to the

patents thus providing more flexibility and functionality. The

advanced search interface provided for the USPTO database is not

intuitive, with the user having to type in the query in a format

specific to the search engine. A large number of query terms

make this process tedious and frustrating for the user. Having a

preprocessor frontend thus also provides an easier access to the

data. The primary users of our system would mainly be either a

patent examiner looking for patents similar to the one under

examination or a potential patent applicant who is looking for

existing patents related to his invention. The patents being

searched for are referred to as prior art. In both these cases the

users have a large sample text available and are looking for other

documents similar to it.

This paper is organized as follows. Section 2 discusses some

related work in this area. Section 3 gives the query generation

mechanism and describes the algorithm used in our approach.

Section 4 gives the implementation details of the system. Section

5 presents some preliminary measurements made with this system.

2. RELATED WORK
Related work exists in two areas: automatic query generation and

USPTO database access. We briefly examine each of these areas.

2.1 Patent Search Tools
There have been many projects and products which have examine

the use of software to facilitate access to patent database access.

These tools can be divided into two classes: those that access

their own cached copies of the patent databases, and those that

provide a frontend to access the existing patent databases.

There are two major products that provide access to their own

archive of the patents. GetthePatent.com [11] facilitates access of

patents by text, field, query, and number. The goal is to provide

the ability to download multiple pages of a patent to a users PC

using their own archive of patent databases including but not

limited to the USPTO database. The accessed archive is updated

weekly. Perhaps the most well know patent access tool is

provided by Google Patent Search [15]. Using a traditional

Google GUI interface, Google Patent Search facilitates a

straightforward easy to use access of its own USPTO database

archive.

There have been several other products that function as frontends

to existing patent databases. IP-Discover [12] is a software tool

which can be placed on a user’s PC. As with GetThePatent, many

different patent databases are searched. IP-Discover is not really

a Web based tool as it searches the relevant patent databases and

downloads results in a background mode. Unlike GetthePatent,

IP-Discover accesses the relevant patent databases as opposed to

an archive. SurfIP also accesses many different patent databases

[13]. It can also be used to search trademark and design

databases. It provides Boolean keyword access, patent number

search access, and access via formatted field values to the specific

patent databases themselves. The GUI interface is easier to use

than that of the actual patent database systems themselves.

PatentHunter is a software package that provides a frontend to

download complete patents to a user’s PC [14]. It directly

accesses the USPTO database. Free Patents Onine provides an

online Web portal to access the USPTO database [15]. It uses a

sophisticated Porter Stemming method to improve recall.

Identified patents are downloaded in either a compressed pdf

format or XML. Some aggregate operations of patent fields (such

as forward and backward link counts) are provided as are data

analysis tools.

In the above sampling of the existing patent search tools, none of

the products facilitate an algorithm such as the one we propose.

Also, none of them allow a patent (or text document) to be

provided as input.

2.2 Automatic Query Generation
There have been many ways proposed to generate queries

automatically. Primarily query generation is done in two ways,

1. The user provides a word that he/she is interested in and

the system uses this word and establishes a set of relevant

keywords related to this word

2. A system takes non intrusive samples of the user’s

environment to establish a probable context and suggests

keywords that user may be interested in.

In the method proposed by Ryu et. al. [3], the keyword expansion

approach is used. The keyword that the user gives is acted upon

by an inference engine that uses an ontology knowledge base and

generates a list of related keywords. A semantic thesaurus is then

used to add keywords to these terms. Term weights are then

calculated for these expanded keywords and top n relevant

keywords are then used as the query that is submitted to a search

engine. With a patent search engine, we do not have the facility to

establish a context and keywords may have multiple meanings

with respect to the context in which they occur and the number of

different contexts may be large. This makes it difficult for a user

to define an ontology which could be used by an inference engine

to generate additional keywords.

The method proposed by Kulyukin for automatic query generation

[4] is suitable to situations where retrieval of documents is not the

primary task and the size of the document collection is known.

The system takes random samples of the text on which the user is

working and generates queries. The results of the queries are

presented to the user and feedback is solicited in a non-intrusive

manner. There are two drawbacks in using this approach with a

patent search engine. One is for the user to validate the results and

the other is the prior knowledge of the document collection.

Given the vast number of documents in the patent database, it

would be very difficult for the user to quickly make any form of

relevance judgments. In our technique we do not know the

document collection and avoid user feedback.

The methods listed above do not work with a dynamic patent

database. In this environment we do not have a corpus to train the

system.

Our contribution is two fold. First, we allow the user to specify

the input text, which is arbitrarily large like the claims section

from a prior patent or from a patent application. Secondly, the

query is generated from a single document without any need for

training.

3. PATENT SEARCH
Our work was primarily motivated by the difficulty involved in

searching for patent documents. Given the large body of text

present in a patent database, it is a difficult proposition when one

has to search for patents that are similar to a given text. While the

user would have to read through the entire text to validate the

usefulness of the returned document, there are no first level tools

that assist in identifying a set of potential prior arts. For example,

when it comes to searching for patents, different types of searches

may be possible [8].

Novelty Search: This is done to establish the patentability of an

invention. This search would include any and all public domain

knowledge to determine whether the invention is novel enough to

be patented. The search realm for this type of search would

include more than just the patent database.

Infringement Search: This search is conducted to find whether

the invention would infringe an already existing and unexpired

patent. This search primarily involves the patent databases. The

claims section of the patent is ideally suited for this search.

State-of-the-Art Search: This search is used to establish the

current state-of-the-art is the field related to the invention. This

search usually yields the list of patents that form the prior art for

this invention as long as the infringement problems are avoided.

Right-to-Use Search: This search is used to establish whether

there is a basis for not enforcing an infringed unexpired patent.

This basis is usually determined by examining the application

process for the infringed patent and an examination of the prior

art of the infringed patent.

Our proposed technique would be useful as a first level search

tool in all the above search cases. In all these cases, forming

queries to maximize relevant results can prove to be tedious.

Having a tool that could suggest useful keywords and rank them

based on importance would be highly effective for the users.

3.1 USPTO Patent Document
A USPTO Patent document is a legal document published by the

USPTO describing the invention for which the patent has been

granted. The patent document is made of the following sections,

• [PN] Patent number, which identifies the patent

• [IN] The name of the inventor

• [AN] The name of patent owner or the assignee

• [PEX] The examiners of the patent application

• [CCL], [ICL] US and international search classification of

the subject matter

• [REF] [OREF] Prior art that are referenced by this patent.

These may be other patents and/or other documents in the

public domain

• [ABST] Abstract section describing the environment and

nature of invention in less than 250 terms

• [SPEC] Description that describes the background of the

invention along with the field of invention and proceeds to

describe the details of the patent.

• [ACLM] The Claims section which lists the qualities of this

invention in terms of what it does.

The complete list of patent document fields and their notations

can be found in [11].

3.2 Search Engine
We use the patent search engine hosted at USPTO for running the

queries generated by our applications. The search engine handles

simple field based queries and has an advanced search section

where detailed queries can be specified using the described query

format. In this paper we use the generated query words to create

the query in the advanced query format. The query format is given

below:

FIELD/(field item) AND FIELD/(field item) AND ..

where,

FIELD may be one of; ACLM, ABST, SPEC, APD, PN

Field item is the value associated with that field

The fields ACLM, ABST, SPEC are used to search the body of

the patents while the others are specific fields of the patent such

the patent number, classification and dates.

ABST refers to the abstract of the patent. The abstract contains

less than 250 words and is not a useful indication of the details of

the invention. It is used as an overview section for users than as a

potential search text. ACLM refers to the claims section of the

patent and is the best description of the patent. We primarily

search this section for obtaining good results. SPEC refers to the

description section of the patent. While SPEC usually contains the

largest amount of text, it is usually diluted compared to the claims

section as it is more verbose compared to the claims section. In

our studies we primarily used the ACLM and the SPEC based

queries.

4. OUR APPROACH
The best source information about a document is contained within

the document itself. This property is exploited by the tf-idf

measure [17] which promotes words that occur frequently within

a document but occur less frequently in a document collection.

This metric is widely used in indexing schemes for search

engines. If one can have the knowledge of the index of a search

engine, then it would be easy to select the keywords for the query.

But it is not feasible to as the indexes change continuously over

time as new documents are added to the system. So, the next

option is to get a set of keywords that closely resemble the index

stored by the search engine for that document.

We use an algorithm originally proposed as an alternative to the

tf-idf indexing scheme. In our initial studies we found that it

works well as technique to generate keywords for queries as

opposed to indexing.

4.1 Keyword Extraction
We now describe the algorithm proposed by Matsuo Et. al. [1].

Following this description we introduce our extended version that

takes citations and classification in to account.

The main idea of Matsuo’s algorithm is that, if a term occurs

frequently with a set of other high frequency terms, then the term

is likely to be significant. This co-occurrence bias is calculated

using the χ2 test. The test is used to calculate the deviation of

expected frequencies from observed frequencies. Statistically, χ2

is defined as,

()()
∑
∈

−
=

Gg
gw

gw

pn

pngwfreq ,
2

χ
 (1)

Where,

• freq(w,g) is the frequency of co-occurrence of terms w

and g

• G is the set of frequently occurring terms in the

document

• nwpg is the expected frequency of co-occurrence with nw

being the number of terms in the sentences where w

occurs and pg is the probability that a term in the

document may co-occur with g

Matsuo’s algorithm uses a modified Chi Squared as shown

below:.

()

pn

pn

gw

gw

Gg

gwfreq
ww

),(
)()(max

22'
−

−=
∈

χχ
 (2)

In this equation the χ2 value of the maximal term is subtracted.

This is useful, since the χ2 value would be low if it co-occurs with

only one term and high if it co-occurs with multiple terms. To

improve the reliability χ2 values, the algorithm clusters frequent

terms and calculates the χ2 values over the clusters. This is

primarily done to prevent large χ2 values of terms that occur with

co-occurring frequent terms. Clustering is done pair wise using

Jensen-Shannon divergence [7] that calculates the similarity

between two distributions. Two terms belong to the same cluster

if their Jensen Shannon divergence is greater than the threshold

value (0.9 x log 2). The clustering is also done using mutual

information. This means that if terms w1 and w2 occur together

frequently, then they are considered to be in the same cluster. The

mutual information threshold was set as log 2. The threshold

values were determined by running a few experiments with a

variety of patent documents and observing the results. We started

the thresholds at 1.0 and kept varying the threshold each time

until the results had relatively lower number of irrelevant terms

towards the bottom of the list.

4.2 Query Generation
We utilize the keyword co-occurrence algorithm to generate a

basic set of keywords from a given patent document. Once the set

of initial keywords are generated we add to this list in two ways.

We use the patent classification system as a semantic database to

add additional terms to the query. Next we utilize the citations list

of the input patent and process those through the keyword co-

occurrence algorithm. We then add to the initial list the unique list

of keywords generated from using the citations and the

classification database.

The algorithm steps are given in the next section. We retain the

steps from the original keyword co-occurrence algorithm and add

our modifications to it. We can either run the algorithm against

the claims section or the specification sections of the input patent.

4.3 Algorithm Listing
Step 1: Preprocessing

• Discard stop words listed in [9].

• Stem the remaining words using the Porter Stemming

Algorithm [12]

Step 2: Selection of frequent terms

• Select the top frequent terms up to 30% of the number

of running terms (Ntotal)

Step 3: Clustering frequent terms

• Cluster a pair of terms whose Jensen-Shannon

divergence is above the threshold (0.90xlog 2).

• Cluster a pair of terms whose mutual information is

above the threshold (log(2.0)).

• Terms can be clustered by either of the two clustering

method. Let the resultant set of clusters be called C.

Step 4: Calculation of expected probability

• Count the number of terms co-occurring with c Є C,

denoted as nc, to yield the expected probability pc =

nc/Ntotal.

Step 5: Calculation of χ2 value

• For each term w, count co-occurrence frequency with c

Є C, denoted as freq(w, c). Count the total number of

terms in the sentences including w, denoted as nw.

Calculate χ’2 value given by (2).

Step 6: Output keywords

• Normalize the χ’2 values using the highest value

returned and show the list of words that are greater than

a threshold value. We have found that a threshold value

between 0.2 and 0.5 depending on the text size works

well to return relevant terms. Mark this as List1.

Step 7: Extract terms from classification category

• Get the classification numbers of the input patent and

extract the words in the classification category after

discarding stop words. Mark this as List2.

Step 8: Run the keyword co-occurrence algorithm against the

citations

• Run the keyword generation algorithm against the

appropriate section of the citation patents and get a list

of the unique terms. Mark this as List3.

Step 9: Merge the generated keywords

• Merge List1, List2 and List3

Step 10: Form a USPTO query from the keywords generated

• Form a USPTO query and submit the resultant query to

the Patent Search Engine.

Step 11: Calculate the actual relevance of the results

• Calculate the relevance of the resultant patents with the

input patent to determine the actual relevance.

We illustrate the use of this algorithm with the following example.

For purposes of being concise, we make use of small amounts of

text here. Consider the abstract of a USPTO issued patent shown

below,

5. IMPLEMENTATION
This section describes our implementation of the algorithm. The

algorithm is implemented as a python CGI application running on

the apache web server. The application would connect to the

USPTO database and fetch a patent document, which was then

processed to remove the HTML tags and stored in a local database

USPTO No. 5095480,

Title: Message routing system for shared

communication media networks

Input Text: A plurality of disparate communication

network systems communicate with each other through
the use of different physical media protocols. Each
of the systems has at least one input and one
output. A message routing system couples a
transmitter at any one system input to a receiver
at any other system output using a message format
that is structure independent of the location of
the receiver in the system. Each
receiver/transmitter device coupled to any one
system input has a unique, fixed and unchangeable
identification code regardless of the communication
network system to which it is connected. To couple
a message from any one receiver/transmitter device
to a second receiver/transmitter device at an
unknown location within the communication network
system, a message format is transmitted from the
sending location containing the fixed, unique
identification code of the receiving station. A
routing system having a plurality of intermediate
routing devices receives the message format and
couples it to the receiving station at the unknown
location using only the fixed, unique
identification codes of the transmitting and
receiving stations and the addresses of the
intermediate routing devices for determining
routing.

Identified Terms From Patent: receiver, systems,

routing, device, message

Suggested Terms (From Classification): address,

architecture, area, channel, channels,
communicated, data, delay, distributed, expense,
field, geographical, header, information,
interexchange, nodes, packet, pattern, plurality,
pulse, routing, selection, signalling, specified,
switch, switching, toll

Suggested Terms (From Citations): lines, packets,

connected, output, telephone, radio, sets,
specific, zones, devices, searching, arrangement,
paging, switches, local, data, channels, cellular,
personal, computers, cellular, system, nodes,
network

USPTO Query: ABST/receiver AND systems AND routing

AND device AND message AND lines AND communication
AND paging AND nodes AND data AND personal AND
telephone AND switches AND information AND packet
AND network AND computers

No. of Results: 1419

Results using only the input patent keywords: 21363

to speedup subsequent fetches. The outline of the program flow is

given in Figure 1.

Input Text: For our search purposes we primarily use the claims

section since it forms the best description of the patent. The

abstract section has very little text to conduct any meaningful

search and the description contains a lot of loose text that could

dilute the generated query resulting slightly reduced precision.

Preprocess: The input text is preprocessed by removing the

common English stop words. Then the set of patent domain stop

words identified in [9] are removed. The remaining words are

then stemmed using the porter algorithm. The python based

NLTK implementation was used for most of the text processing.

Query generation: The algorithm described in the previous

section is used to generate the query keywords. These keywords

are then converted to the patent search engine format based on the

user’s selection of the field to be searched.

Extract Words from Classification: The classification numbers

from the input patent is used to generate a set of additional words.

Usually these words tend to be very closely related to the terms

generated from the patent text.

Extract Words from Cited Patents: The citations from the

patent are used to generate additional keywords. The purpose of

doing this is to span the keywords across as many classification

categories as possible. For example, some patents may reference

an invention in a totally different field. Doing the citation analysis

would greatly increase the coverage of the patent query that we

generate.

Merge Keywords: We then merge the keywords together. The

merging is currently done in a naïve manner. We take the top

ranked words from each cited patent to formulate the query. We

then add any unique words that we get from the classification

categories.

User Specified Keywords: The user is allowed add keywords that

he feels would be useful in improving the search results. The list

of keywords that are generated is also made selectable by the user.

The user could select the keywords randomly from the list or go

with the top n terms.

Query Submission: The formulated query is now submitted to

the USPTO search engine using python’s urllib semantics [9].

Search Engine Results: The results that are returned by the

USPTO search engine contain the patent number and its title. The

patents identified by the numbers returned are also fetched.

Result Evaluation: The returned patens text is parsed and is

compared with the input text of the generated query. We use a

vector model and compare the two documents using the cosine

method.

Ranked Results: The compared set of documents is then ranked

according to their similarity with respect to the input text.

6. EVALUATION & RESULTS
To evaluate the performance of this system, we ran a series of

experiments for various input patents. We used two metrics to

evaluate the performance of our implementation.

• Precision which determines the number of relevant

documents in the retrieved set and

• Expected search length which evaluates the system

based on the position of the relevant document in the

retrieved set.

We do not use recall as a measure because we don't know the

relevant set. Also, it is not possible to fix the relevant set based on

the citations and references. Rather than using recall as a measure,

we use sliding ratio. This would give an indication of whether the

system is useful. Also, we define a way of determining relevance

from result set using the similarity measures that were returned.

In the experiments we generated the queries using the claims text,

primarily because the claims section has the best information

about the patent. This is also evident from table 1 which gives the

average normalized χ2 for terms extracted from claims and

description sections.

Patent Number Claims Description

5095480 0.751247 0.5366318

7251748 0.5600668 0.487591

6071203 0.516233 0.4883837

5554588 0.517553 0.4763623

Table 1: Average χ2 Values

The number of terms included in the query was limited by the

query length for the USPTO search engine which is a 256

character limit on the expanded query. In cases when the query

terms return too few results from the USPTO search engine, we

used the search engine hosted at [19]. When we include a large

number of terms related to the input patent to form a query, it

results in returning only the input patent. This is as expected since

a larger set of words would more accurately define a documents

index. Since patent claims tend to be well defined for a particular

invention, the search engine returns the patent the query was

generated from.

To find out the performance of the search query, we evaluate the

returned patents and compare the claims text with the input text

Input Patent

Preprocess Query

Generation

User

Specified

Keywords

Query

Submission

Search

Engine

Results

Result

Evaluation

Ranked

Results

Figure 1: Implementation Flow Sequence

Extract words

from

classification

Extract words

from Cited

Patents

Merge

Keywords

that generated the query using a cosine method[x]. Table x lists

the similarity of the returned results to the input text which was

the claims section of the patent. To evaluate the performance of

the system we use the sliding ratio method as given in [x]. Table x

gives the similarity scores for the results generated by using the

claims text of patent number 7,251,748.

Patent Number Similarity Sliding Ratio

7,036,729 0.246259140656 0.777135782

6,785,779 0.269319317422 0.879526881

6,606,604 0.316880455599 0.993770032

6,330,347 0.200545157187 0.953011384

6,323,846 0.191944449865 0.928532033

6,138,123 0.226133508433 0.938989953

5,822,712 0.235294541252 0.965901222

5,410,732 0.251477845385 1

Table 2: Sliding Ratio & Similarity

From the table it can be seen that the third patent returned has the

highest similarity to the input text. A disadvantage of this measure

though is that the tendency to return false positives. To determine

the precision of the system, we decided on a threshold of

similarity of the returned results. From the results, we can see that

the similarity values tend to be on the lower side. This is primarily

because the claims section are carefully worded and since we are

comparing issued patents, the scores would be lower. To fix the

relevant documents without the user’s intervention, we utilize an

average value that improves our results. Since the entire

documents are compared, the similarity scores give us a good

sense of estimation of which documents are relevant to our search.

We use the average of the similarity scores returned to fix a

precision threshold. Similarity scores less than the average are

automatically labeled non relevant. The precision values

calculated using this method is given in table 3. We again used

claims sections of the input patent.

Patent Number Query Length Precision

5095480 7 0.416

7251748 5 0.5

6071203 19 0.57

Table 3: Search Precision

Expected search length is the number irrelevant documents that

need to be examined before the first n relevant document is found.

Table 4 gives the expected search lengths for various lengths of n.

It can be seen that the queries that were generated worked

reasonably well for short lengths. For the patent 5095480 the ESL

tended to be high since the document contains a higher percentage

of generic terms related to the domain of the invention. This is

very clear when we see that the patent has been referenced by

more than 200 other patents.

Patent Number ESL (n = 2) ESL (n = 5) ESL (n = 10)

5095480 2 8 9

7251748 1 1 7

6071203 0 0 7

Table 4: Expected Search Lengths

Our approach attempts to reduce the cost and time required for

searching patents. A strategy that can be adopted while searching

for patents is outlined in [10]. Using our approach we can reduce

the time and cost overhead for some of the steps involved in this

strategy. The primary reduction in time can be achieved during the

classification process by automatic suggestion of potential

keywords and identification of relevant classes from the

keywords. Also the system can be used to query USPTO to

retrieve patents by classification and rank the patents based on

their relevance to the input text. This has a potential of greatly

reducing the time taken to find prior art within the patent domain.

7. FUTURE WORK
In this paper we presented a non intrusive method for query

generation. A patent search engine was used to demonstrate the

concept. We used a patent document to generate queries. These

queries were submitted to the search engine and the results

returned were ranked using vector model by comparing agaist the

text that generated the query. The results were evaluated using

identified metrics. We would like look at a way of suggesting

additional keywords using NLP techniques that would try to

improve the results. NLP techniques can also be used to improve

the Boolean queries by making synonyms among the query terms

as disjunctions. Also, comparative testing between the system and

human users would highlight the instances when the system falls

short. While avoiding intrusive relevance feedback is a primary,

we would look at a way of introducing this system into a Content

Management System that could improve upon the keywords

currently generated by making implicit measurements against

queries.

8. REFERENCES
[1] Y. Matsuo and M. Ishizuka. “Keyword Extraction from a

Single Document using Word Co-occurrence Statistical

Information”, International Journal on Artificial Intelligence

Tools, Vol. 13, No. 1 (2004) 157-169

[2] George Almpanidis and Constantine Kotropoulos,

“Combining Text and Link Analysis for Focused Crawling”,

Information Systems, Volume 32, Issue 6 (September 2007),

Pages 886-908

[3] Hoyeon Ryu, et al., “n-Keyword based Automatic Query
Generation”, ICHIT, Proceedings of the 2006 International

Conference on Hybrid Information Technology, Volume 02

(2006),Pages 90-96

[4] V. A. Kulyukin, “Automated query generation for embedded
information retrieval.” [Online]. Available:

http://citeseer.ist.psu.edu/449311.html

[5] Burke, R., Hammond, K. & Cooper, E. “Knowledge-based
navigation of complex information spaces”. In Proceedings

of the 13th National Conference on Artificial Intelligence,

pages 462-468, AAAI, 1996

[6] L. S. Larkey, “A patent search and classification system,” in
Proceedings of DL-99, 4th ACM Conference on Digital

Libraries, 1999, pp. 179-187.

[7] I. Dagan, F. C. N. Pereira, and L. Lee, “Similarity-based
estimation of word cooccurrence probabilities,” in Meeting

of the Association for Computational Linguistics, 1994, pp.

272-278.

[8] Howard B. Rockman, “Intellectual Property Law for

Scientists and Engineers”, IEEE Press, 2004

[9] USPTO, “List of Stopwords”, [Online].

http://www.uspto.gov/patft/help/stopword.htm

[10] USPTO, “The 7-Step U. S. Patent Search Strategy”,
[Online], http://www.uspto.gov/go/ptdl/step7.htm

[11] USPTO, “Tips on Fielded Searching”, [Online]

http://www.uspto.gov/patft/help/helpflds.htm

[12] M. F. Porter, "An algorithm for suffix stripping" in Readings

in information retrieval, Morgan Kaufmann Multimedia

Information And Systems Series, 1997, pp. 313-316

[13] Gerard Salton and Michael J. McGill, “Introduction to

Modern Information Retrieval”, McGraw-Hill, 1983.

[14] Get the Patent, http://www.getthepatent.com/.

[15] IP-Discover, http://www.ipdiscover.com/ .

[16] SurfIP, http://www.surfip.com/ .

[17] PatentHunter, http://www.patenthunter.com/ .

[18] Google Patent Search, http://www.google.com/patents .

[19] FreePatentsOnline, http://www.freepatentsonline.com/ .

